
Multi Party Computation: From Theory to
Practice

Nigel P. Smart

Department of Computer Science,
University Of Bristol,

Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB.

November 22, 2012

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 1



What if?

Take two drug companies.

Each has a database of molecules and toxicology test results.

They want to combine their results

Without revealing what molecules are in the databases.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 2



What if?

A government wants to search network traffic for a specific
anomolous behaviour.

But the network operator does not want to give access to the
network to the government.

And the government does not want to reveal exactly what behaviour
it is searching for.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 3



Computing on Encrypted Data
These are just some ideas of applications for Computing On
Encrypted Data.

There are two main ways of doing this:

Fully Homomorphic Encryption
I First scheme developed in 2009
I Party A sends encrypted data to party B.
I Party B does some computation and returns the encrypted

result to party A
I Party A now decrypts to find out the answer.

Multi-Party Computation
I First schemes developed in mid 1980’s.
I Parties jointly compute a function on their inputs using a

protocol
I No information is revealed about the parties inputs.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 4



Theory

In theory both such technologies can compute anything.

In FHE one has a huge computational cost, but zero communication.

In MPC one has virtually no computational cost, but huge
communication.

In theory we can make either technology error tolerent
I Even against malicious players.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 5



Practice

FHE is currently impractical for all but the simplest functions
I Although you can do some useful things with it.

MPC has been deployed for some operations
I Mainly against semi-honest adversaries.
I Tolerating only one baddie out of exactly three players.

We will show how to combine FHE and MPC to get something much
better and practical.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 6



Set up

Assume n parties of which n − 1 can be malicious.

Assume a global (secret) key α ∈ Fp is determined

Each party i holds αi with

α = α1 + . . .+ αn.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 7



Secret Sharing

All data is represented by elements in Fp.

A secret value x ∈ Fp is shared between the parties as follows
I Party i holds a data share xi

I Party i holds a “MAC” share γi(x)
such that

x = x1 + · · ·+ xn and α · x = γ1(x) + · · ·+ γn(x).

Note we can share a public constant x by
I Party 1 sets x1 = x
I Party i 6= 1 sets xi = 0
I Party i sets γi(x) = αi · x .

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 8



Preprocessing Model

Such a sharing of x is denoted by [x ].

Our protocol works in the preprocessing model.

We (overnight say) generate a lot of data which is independent of
the function to be computed, or its inputs.

In its basic form the data consists of triples of shared values

[a], [b], [c]

such that
c = a · b.

We discuss how to produce these triples later.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 9



The Computation
To perform the computation we utilize the following idea

Any computation can be represented by a series of additions and
multiplications of elements in Fp.

In other words + and × are a set of Universal Gates over Fp.

We assume the players inputs are shared first using the above
sharing

I Will not explain how to do this, but it is easy

So all we need do is working out how to add and multiply shared
values.

Addition will be easy, multiplication will be hard.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 10



Addition
Suppose we have two shared values [x ] and [y ].

To compute the result [z] of an addition gate the parties individually
execute

I zi = xi + yi

I γi(z) = γi(x) + γi(y)

Note this is a local operation and that we end up with

z =
∑

zi =
∑

(xi + yi) =
(∑

xi

)
+
(∑

yi

)
= x + y ,

α · z =
∑

γi(z) =
∑

(γi(x) + γi(y)) = α · x + α · y

= α · (x + y).

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 11



Linear Secret Sharing

The addition trick works because we have a Linear Secret Sharing
Scheme.

We can locally compute any linear function of shared values

i.e. given constants a, b and c and shared values [x ] and [y ] we can
compute

a · [x ] + b · [y ] + c = [a · x + b · y + c].

We will now use this in our method to perform multiplication.

Note: In what follows “partially opening” a share [x ] means revealing
xi but not the MAC share.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 12



Multiplication
To multiply [x ] and [y ] to obtain [z] we work as follows:

I Take a new triple ([a], [b], [c]) off the precomputed list.
I Partially open [x ]− [a] to obtain ε = x − a.
I Partially open [y ]− [b] to obtain ρ = y − b.
I Locally compute the linear function

[z] = [c] + ε · [b] + ρ · [a] + ε · ρ.
Note

I Each multiplication requires interaction
I If a (resp. b) is random then ε (resp. ρ) is a one-time pad

encryption of x (resp. y ).
We get the correct result because

c + ε · b + ρ · a + ε · ρ
= a · b + (x − a) · b + (y − b) · a + (x − a) · (y − b)
= (a · b) + (x · b − a · b) + (y · a− a · b) + (x · y − x · b − y · a + a · b)
= x · y .

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 13



Computation

So given we can add and multiply we can compute anything

At the end of the computation we check correctness by interactively
checking the MAC values are all correct.

I Again this is easy to do.
I Does not require revealing α.

In practice our current implementation can perform around half a
million multiplications per second

I About the speed of a 286 machine from 1981.
I Although comparison and other bit-operations take longer than

on a 286.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 14



Preprocessing and FHE

We return to the preprocessing, which we do using FHE
I Following is a naive version, the real version has lots of bells

and whistles.

Assume a shared FHE public key pk for an FHE scheme.
I Party i holds a share ski

I Together they can decrypt a ciphertext ct via Decsk1,...,skn(ct).
I Adding and multiplying ciphertexts means underlying plaintexts

get added and multiplied.
I Each party computes Encpk (αi) and broadcasts this.

Last step needed so that each party has Encpk (α).

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 15



Reshare
Given a ciphertext ct encrypting a value m we can make each party
obtain

I An additive share mi , s.t. m =
∑

mi

I And (if needed) a new fresh ciphertext ct′ encrypting m.

Reshare(ct)
I Party i generates a random fi and transmits ctfi = Encpk(fi).
I All compute ctm+f = ct +

∑
ctfi .

I Execute Decsk1,...,skn(ctm+f ) to obtain m + f .
I Party 1 sets m1 = (m + f )− f1.
I Party i 6= 1 sets mi = −fi .
I Set ct′ = Encpk(m + f )−

∑
ctfi .

Use some “default” randomness for the last encryption.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 16



Generating [a] and [b]

We can generate our sharing [a] as follows

I Party i generates a random ai and transmits ctai = Encpk(ai).
I All compute cta =

∑
ctai .

I All compute ctα·a = ctα · cta.
I Execute Reshare on ctα·a so party i obtains γi(a).

Note this can also be executed to obtain [b].

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 17



Generating [c]

This is also easy
I We have cta and ctb.
I All compute ctc = cta·b from cta · ctb.
I Get shares ci via executing Reshare on ctc ; also obtaining a

fresh ciphertext ct′c .
I All compute ctα·c = ctα · ct′c .
I Execute Reshare on ctα·c so party i obtains γi(c).

This is efficient despite using FHE technology because we only
compute with depth one circuits.

Similar tricks with FHE allow us to perform other preprocessing
making the computation phase even faster.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 18



The Future

The above is called the SPDZ protocol

Very efficient and practical for some applications.

Better security properties than other MPC implementations

More flexible in terms of parameters than other MPC
implementations.

Currently looking around for commercial applications and partners
to take this forward.

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 19



Any Questions ?

Nigel P. Smart
Multi Party Computation: From Theory to Practice Slide 20


